Page 30 - 网络电信2020年4月刊上
P. 30

解   决  方  案

                在1310nm、1550nm和1625nm  波长下,甲类光纤RIA与辐射                nuclear environment monitoring around thermonuclear
            剂量关系图如图4所示。                                              reactors[J]. Fusion Engineering and Design, 2008,
                                                                     83(1): 50-59.
             图 4 在 1310nm、1550nm 和 1625nm 波长下甲类光纤 RIA 与辐射剂量的关系
                                                                 [3] TOCCAFONDO I, THORNTON A, GUILLERMAIN E, et al.
                                                                     Distributed Optical Fiber Radiation Sensing at CERN
                                                                     High Energy AcceleRator Mixed Field Facility (CHARM)
                                                                     [C]// 2015 15th European Conference on Radiation
                                                                     and Its Effects on Components and Systems (RADECS),
                                                                     September 14-18,2015, Moscow,Russia:IEEE, 2015: 1-4.
                                                                 [4] FRIEBELE E J, ASKINS C G, GINGERICH M E, et al.
                                                                     Optical fiber waveguides in radiation environments,
                可以看出,RIA在3个波长中都随着辐射剂量线性增加。在                          II[J]. Nuclear Instruments and Methods in Physics
            波长为1310nm和1550nm时,观察到随着辐射剂量率的增大,且                        Research Section B:Beam Interactions with Materials
            光纤RIA与辐射剂量之间的斜率随着剂量的增加而减小。                               and Atoms, 1984, 1(2-3): 355-369.
                在1625nm波长下测试的不同剂量率下RIA线性度最好。实验                   [5] EASON G, NOBLE B, SNEDDON I N. On certain integrals
            结果表明可以在校准斜率之后可以通过OTDR曲线估计辐射剂量                            of Lipschitz-Hankel type involving products of
            和剂量率,并且甲类光纤在1625nm的波长下最为适用于大辐射                           Bessel functions[J]. Philosophical Transactions of
            剂量条件下的分布式辐射传感应用。                                         the Royal Society of London. Series A, Mathematical
                                                                     and Physical Sciences, 1955, 247(935): 529-551.
                四、结束语                                            [6] ALAHBABI M N. 150-km-range distributed temperature
                本文研究了使用光时域反射(OTDR)技术观测单模光纤的                          sensor based on coherent detection of spontaneous
            辐射致衰减(RIA)效应,从而实现分布式辐射传感应用的可                             Brillouin backscatter and in-line Raman amplification
            行性。本文首先对比了不同单模光纤类型对具有相同辐射剂量                              [J]. Journal of the Optical Society of America B, 2005,
            水平和剂量率下辐射敏感性。三类光纤的RIA与辐射剂量都具有                            22(6): 1321-1324.
            很好的线性关系,但不同掺杂光纤对辐射具有不同的辐射致衰                          [7] FRIEBELE E J, GRISCOM D L. Color centers in glass
            减灵敏度,这一现象表明,通过对光纤种类的选择,本文可以                              optical fiber waveguides[J]. MRS Online Proceedings
            实现在不同灵敏度要求下的分布式辐射传感。本文对甲类光纤                              Library Archive, 1985, 61: 319–331.
            进行了进一步的分析,研究光纤RIA与工作波长的关系。波长为                        [8] NEUSTRUEV V B.Colourcentres in germanosilicate
            1310nm和1550nm时,随着辐射剂量的增加,RIA值趋于饱和。而                      glass and optical fibers[J]. Journal of Physics
            这种趋势在1625nm的波长下不明显。同时辐射剂量率对甲类光                           Condensed Matter, 1994, 6(35): 6901-6939.
            纤RIA也无显著影响,这使得甲类光纤在1625nm的波长下有望实                     [9] HENSCHEL H, O KÖHN, SCHMIDT H U. Optical fibers as
            现分布式辐射传感。                                                radiation dosimeters[J].Nuclear Instruments & Methods
                                                                     in Physics Research, 1992, 69(2–3): 307-314.
            参考文献                                                 [10]RAHMAN A K M M, ZUBAIR H T, BEGUM M, et al.
            [1] HENSCHEL H, KÖRFER M, KUHNHENN J, et al. Fiber       Germanium-doped optical fiber for real-time
                optic radiation sensor systems for particle          radiation dosimetry[J].Radiation Physics &
                accelerators[J]. Nuclear Instruments & Methods in      Chemistry, 2015, 116: 170-175.
                Physics Research, Section A, (Accelerators,      [11]TOCCAFONDO I, MARIN Y E, GUILLERMAIN E, et al.
                Spectrometers, Detectors and Associated Equipment),      Distributed optical fiber radiation sensing in a
                2004, 526(3): 537-550.                               mixed-field radiation environment at CERN[J].
            [2] FERNANDEZ A F,BRICHARD B,O’KEEFFE S,et al.Real-      Journal of Lightwave Technology,2017,35(16): 3303-3310.
                time fiber optic radiation dosimeters for















            42                                         网络电信 二零二零年四月
   25   26   27   28   29   30   31   32   33   34   35