Page 33 - 网络电信2024年10月刊
P. 33
光通信
功耗。 es,2022,5(8):210127-1-210127-25.
[11]Xia P,Li Z,Ning N,et al.8× 250 Gbit/s PAM4
结束语
transmission over 1 km single mode fiber with an all-silicon
在大数据时代,流量的增长逐渐向中短距离城域网络传 LAN WDM transmitter[C]//2023 Optical Fiber Communications
输转移,传统的针对远距离传输的“三超”方案在短距离传输 Conference and Exhibition(OFC).IEEE,2023:1- 3.
中不完全适用,面向数据中心的光互联需要专用的“三超”方
案。本文从“超大容量,超低延迟,超低功耗”三个方面介绍 [12]Hossain M S B,Rahman T,Stojnavi N,et al.Feasibility
现有技术方案取得的成果,探讨了这些技术目前的局限,应用 of Transmitting 270 Gbit/s with PAM-8 in O-band CWDM4 with IM/
前景以及对数据中心光互联的必要性。 DD System[C]//Optical Fiber Communication Conference.Optica
Publishing Group,2021:W7F.3.
数据中心“三超”光互联内部是相互联系,相互促进的。
超大容量的实现需要解决信号间串扰和传输中损耗的问题,而 [13]Masuda A,Yamamoto S,Taniguchi H,et al.255-Gbps PAM-
解决这类问题一般使用先进的DSP算法,但传统的DSP算法复杂 8 transmission under 20-GHz bandwidth limitation using NL-MLSE
度较高,所以需要通过新的技术方案降低其复杂度以满足数据 based on Volterra filter[C]//2019 Optical Fiber Communications
中心光互联低延迟的要求,同时又不能损害DSP算法处理信号的 Conference and Exhibition (OFC).IEEE,2019:1-3.
能力。然而,高性能的DSP算法往往需要专用的硬件,这会增加
系统硬件成本,所以更低损耗的器件被研制以实现数据中心低 [14]Taniguchi H,Yamamoto S,Kisaka Y,et al.800-Gbps PAM-
功耗的光互联。 4 O-band transmission through 2-km SMF using 4λ LAN-WDM TOSA
with MLSE based on nonlinear channel estimation and decision
综上所述,“超大容量,超低延迟,超低功耗”是未来数 feedback[C]//2021 European Conference on Optical Communication
据中心光互联的技术目标,控制成本,各种技术相互协同是其 (ECOC).IEEE,2021:1-4.
基本思想,而数据中心技术的实现依赖于器件材料的更新以及
智能化的普及。新型材料的引入和智能化网络架构的提出是突 [15]Zhong K,Mo J,Grzybowski R,et al.400 Gbps PAM-
破数据中心“三超”光互联技术瓶颈的关键。 4 signal transmission using a monolithic laser integrated
silicon photonics transmitter[C]//Optical Fiber Communication
参考文献: Conference.Optica Publishing Group,2019:Tu2I.4.
[1]Wettlin T,Calabrò S,Rahman T,et al.DSP for high-speed [16]Grillanda S,Che D,Bolle C,et al.8λ×200 Gb/s WDM
short-reach IM/DD systems using PAM[J].Journal of Lightwave Te transmission enabled by a hybrid-integrated comb source
chnology,2020,38(24):6771-6778. without optical amplification[C]//49th European Conference on
Optical Communications (ECOC 2023).IET,2023,2023:1023-1026.
[2]Tu Y,Xiang M,Cheng W,et al.Simplified Look-Up Table
(LUT) Based Digital Pre-Distortion for 100 GBaud/λ PAM-4 [17]Li C,Liu Z,Sun Y,et al.C-band Net 1.8 Tb/s(240Gb/
Transmission[J].Journal of Lightwave Technology,2023. s/λ× 8λ)DWDM IM/DD Transmission over 1.4 km AR-HCF with
Linear FFE Only[C]//2024 Optical Fiber Communications
[3]Tariq F,Khandaker M R A,Wong K K,et al.A Conference and Exhibition(OFC).IEEE,2024:1-3.
speculative study on 6G[J].IEEE Wireless Communicatio
ns,2020,27(4):118-125. [18]Reza A G,Venkatasubramani L N,Gautam A R,et al.4×
130 Gbit/s PS-PAM-16 transmissions using an integrated SOA-
[4]张帆,朱逸萧.面向数据中心光互连的高速光传输技术[J].中兴 PIN design for intra-DCIs enabled by machine learning[C]//49th
通讯技术,2019,25(5):17-24. European Conference on Optical Communications (ECOC 2023).
IET,2023,2023:373-376.
[5]王力.面向数据中心光互连的简化相干技术研究[D].华中科技
大学,2022.Wang Li.Research on Simplified Coherent Technology [19]Z.Xing et al.,“600G PAM4 transmission using a 4-lambda
for Data Center Optical Interconnects[D].Master's Thesis, CWDM TOSA based on controlled-ISI pulse shaping and Tomlinson
Huazhong University of Science and Technology,2022. Harashima precoding,”in 45th Eur.Conf.on Opt.Commun.,Dublin,
Ireland,2019,Paper Tu.3.D.1.
[6]刘璐,吴冰冰.片间光互连发展态势分析[J].光通信研究,
2024(5):240029. [20]Yang C,Li C,Gong Y,et al.,4 Tb/s (500 Gb/s x 8) PAM-16
WDM Transmission over 1.4-km Anti-resonant Hollow-core Fiber
[7]郭秉礼,黄善国.数据中心中光交换技术研究的现状与挑战[J]. Based on Ultra-high Bandwidth Modulator at C+L Band[C]//50th
中兴通讯技术,2019,25(05):25-30. European Conference on Optical Communications (ECOC 2024).
IET,2024,2024:.
[8]Xiang M,Fu S,Xu O,et al.Advanced DSP enabled
C-band 112 Gbit/s/λ PAM-4 transmissions with [21]Yang Y,Xu Z,Ji H,et al.Net 8×250 Gbit/s/λ PAM6/8
severe bandwidth-constraint[J].Journal of Lightwave Optical Interconnect Over High-Density Eight-Core Fiber and
Technology,2022,40(4):987-996. Low-Crosstalk Laser Direct Writing FI/FO Devices[C]//2023 Asia
Communications and Photonics Conference/2023 International
[9]El-Nahal F, Hanik N. Technologies for future wavelength Photonics and Optoelectronics Meetings (ACP/POEM).IEEE,2023:
division multiplexing passive optical networks[J].IET 1-4.
optoelectronics,2020,14(2): 53-57.
[22]Fan R,Yang C,Luo M. 3.078 Tb/s (162-Gb/s×19) PAM-
[10]Khonina S N,Kazanskiy N L,Butt M A,et al.Optical 8 Transmission Based on 1-km 19-core Fiber Using Liquid Time-
multiplexing techniques and their marriage for on-chip and Constant Networks[C]//2023 Asia Communications and Photonics
optical fiber communication:a review[J].Opto-Electronic Advanc Conference/2023 International Photonics and Optoelectronics
Meetings (ACP/POEM).IEEE,2023:1-3.
[23]Yang C,Fan R,Yu H,et al.4.8Tb/s PS-PAM-8 Bidirectional
44 网络电信 二零二四年十月