Page 27 - 网络电信2024年4月刊
P. 27
运营商专栏
[11] RANAWEERA C, KUA J, DIAS I, et al. 4G to 6G: disruptions and [30] ZHANG J, JIA Z, ZHANG H, et al. Rate-flexible single-
drivers for optical access [J]. Journal of optical communications wavelength TFDM 100G coherent PON based on digital
and networking,2022, 14(2): A143-A153. DOI: 10.1364/ subcarrier multiplexing technology [EB/OL]. [2023-07-23].
JOCN.440798 https://opg. optica. org/abstract. cfm?URI=OFC-2020-W1E.5
[12] SALIOU F, CHANCLOU P, NETO L A, et al. Optical access [31] XU M, JIA Z S, ZHANG H P, et al. Intelligent burst receiving
network interfaces for 5G and beyond [J]. Journal of optical control in 100G coherent PON with 4 × 25G TFDM upstream
communications and networking, 2021, 13(8): D32-D42 transmission [C]//Proceedings of 2022 Optical Fiber
[13] LARRABEITI D, CONTRERAS L M, OTERO G, et al. Toward Communications Conference andExhibition (OFC). IEEE, 2022:
end-to-end latency management of 5G network slicing and 1-3
fronthaul traffic (Invited paper) [J]. Optical fiber technology, [32] WANG H D, ZHOU J, XING Z P, et al. Fast-convergence digital
2023, 76: 103220. DOI: 10.1016/j.yofte.2022.103220 signal processing for coherent PON using digital SCM [J].
[14] JIANG M L, CEZANNE J, SAMPATH A, et al. Wireless fronthaul Journal of lightwave technology, 2023, 41(14): 4635-4643. DOI:
for 5G and future radio access networks: challenges and 10.1109/JLT.2023.3243828
enabling technologies [J]. IEEE wireless communications, 2022, [33] LUO S Y, LI Z X, FAN C, et al. Digital mobile fronthaul based
29(2): 108-114. DOI: 10.1109/MWC.003.2100482 on deltasigma modulation employing a simple self-coherent
[15] DAS S, RUFFINI M. PON virtualisation with EAST-WEST receiver [J]. Optics express, 2022, 30(17): 30684. DOI: 10.1364/
communications for low-latency converged multi-access edge oe.459976
computing (MEC) [EB/OL]. [2023-7-30]. https://arxiv. org/ [34] ZOU Y, ZHONG L S, ZHANG S M, et al. A hierarchical
abs/2004.06138.pdf modulation enabled SNR allocable delta-sigma digital mobile
[16] SALIOU F, NETO L A, SIMON G, et al. 5G & optics in 2020 - fronthaul system [J]. IEEE photonics journal, 2021, 14(1): 1-6.
where are we now? what did we learn? [EB/OL]. [2023-07-20]. DOI: 10.1109/JPHOT.2021.3135148
https://ieeexplore. ieee.org/document/9333337 [35] ZHONG L S, ZOU Y, ZHANG S M, et al. Experimental
[17] XIE C J, CHENG J C. Coherent optics for data center networks demonstration of delta-sigma modulation supported 65536-
[C]//Proceedings of 2020 IEEE Photonics Society Summer QAM OFDM transmission for fronthaul/WiFi applications
Topicals Meeting Series (SUM). IEEE, 2020: 1-2. DOI: 10.1109/ [C]//Proceedings of 2021 European Conference on Optical
SUM48678.2020.9161052 Communication (ECOC). IEEE, 2021: 1-3. DOI:10.1109/
[18] KUMAR S, PAPEN G, SCHMIDTKE K, et al. Intra-data center ECOC52684.2021.9606072
interconnects, networking, and architectures [C]//Optical Fiber [36] ZHAO L, XU S C, WANG M X, et al. Probabilistic shaping-based
Telecommunications VII. Elsevier, 2020: 627-672 delta sigma modulation [J]. Optics letters, 2023, 48(6): 1450-
[19] Infinera. Innovation details: XR optics [EB/OL]. [2023-07-23]. 1453
https://www.infinera.com/innovation/xr-optics [37] HADI M U, MURTAZA G. Enhancing distributed feedback-
[20] FARUK M S, LI X, NESSET D, et al. Coherent passive optical standard single mode fiber-radio over fiber links performance by
networks: why, when, and how [J]. IEEE communications neural network digital predistortion [J]. Microwave and optical
magazine, 2021, 59(12):112-117. DOI: 10.1109/ technology letters, 2021,63(5): 1558-1565. DOI: 10.1002/
MCOM.010.2100503 mop.32774
[21] ZHANG J W, JIA Z S. Coherent passive optical networks [38] HADI M U. Mitigation of nonlinearities in analog radio over fiber
for 100 G/λ-andbeyond fiber access: recent progress and links using machine learning approach [J]. ICT express, 2021,
outlook [J]. IEEE network, 2022,36(2): 116-123. DOI: 10.1109/ 7(2): 253-258.DOI: 10.1016/j.icte.2020.11.002
MNET.005.2100604 [39] HADI M U, BASIT A. Machine learning for performance
[22] CAMPOS L A, JIA Z S, ZHANG H P, et al. Coherent optics for enhancement in fronthaul links for IOT applications [C]//
access from P2P to P2MP [J]. Journal of optical communications Proceedings of 2021 International Conference on Digital Futures
and networking, 2023, 15(3): A114-A123 and Transformative Technologies (ICoDT2). IEEE, 2021: 1-5.
[23] ZHU Y X, YI L L, YANG B, et al. Comparative study of cost- DOI: 10.1109/ICoDT252288.2021.9441542
effective coherent and direct detection schemes for 100 Gb/s/ [40] HADI M U, SOIN N, KAUSAR S. Enhancing 5Gmulti-band
λ PON [J]. Journal of optical communications and networking, long haul optical fronthaul links performance by magnitude-
2020, 12(9): D36. DOI:10.1364/jocn.390911 selective affine digital predistortion method [J]. Microwave and
[24] KOMA R, FUJIWARA M, KANI J I, et al. Burst-mode digital signal optical technology letters, 2022, 64(4): 827-834. DOI: 10.1002/
processing that pre-calculates FIR filter coefficients for digital mop.33169
coherent PON upstream [J]. Journal of optical communications [41] ASSIMAKOPOULOS P, NOOR S, WANG M Q, et al. Flexible
and networking,2018, 10(5): 461-470 and efficient DSP-assisted subcarrier multiplexing for an analog
[25] LI G Q, XING S Z, JIA J L, et al. Local oscillator power mobile fronthaul [J]. IEEE photonics technology letters, 2021,
adjustment-based adaptive amplification for coherent TDM-PON 33(5): 267-270. DOI: 10.1109/LPT.2021.3056511
with wide dynamic range[J]. Journal of lightwave technology, [42] SUNG M, CHO S H, KIM J, et al. Demonstration of IFoF-based
2023, 41(4): 1240-1249. DOI:10.1109/JLT.2022.3216763 mobile fronthaul in 5G prototype with 28-GHz millimeter wave
[26] ZHANG J W, JIA Z S, XU M, et al. Efficient preamble design and [J]. Journal of lightwave technology, 2018, 36(2): 601-609. DOI:
digital signal processing in upstream burst-mode detection of 10.1109/JLT.2017.2763156
100G TDM coherent-PON [J]. Journal of optical communications [43] ISHIMURA S, BEKKALI A, TANAKA K, et al. 1.032-Tb/s CPRI-
and networking,2021, 13(2): A135-A143 equivalent rate IF-over-fiber transmission using a parallel IM/PM
[27] SHEN W W, XING S Z, LI G Q, et al. Demonstration of beyond transmitter for high-capacity mobile fronthaul links [J]. Journal
100G three-dimensional flexible coherent PON in downstream of lightwave technology, 2018, 36(8): 1478-1484. DOI: 10.1109/
with time,frequency and power resource allocation capability JLT.2017.2787151
[C]//Proceedings of Optical Fiber Communication Conference [44] ZHU Y, ZHUGE Q, HU W. Efficient SNR scaling at >10 dB per
(OFC) 2023. Optica Publishing Group, 2023: 1-3. DOI: 10.1364/ extra bandwidth using cascaded hybrid digital-analog radio-
ofc.2023.w1i.5 over-fiber for fronthaul [C]//2022 27th OptoElectronics and
[28] XING S Z, LI G Q, SUN A L, et al. Demonstration of PS- Communications Conference (OECC) and 2022 International
QAM based flexible coherent PON in burst-mode with Conference on Photonics in Switching and Computing (PSC).
300G peak rate and ultrawide dynamic range [J]. Journal of IEEE, 2022: 1-3
lightwave technology, 2023, 41(4):1230-1239. DOI: 10.1109/ [45] ZHANG C, ZHU Y, HE B, et al. Clone-comb-enabled high-
JLT.2022.3208575 capacity digital-analogue fronthaul with high-order modulation
[29] LI G, YAN A, XING S, et al. Pilot-aided continuous digital formats [EB/OL]. (2023-08-31) [2023-09-05]. https://www.
signal processing for multi-format flexible coherent TDM- nature. com/articles/s41566-023-01273-2.
PON in downstream [C]//2023 Optical Fiber Communications [46] ZHANG J W, JI Y F. 5G optical fronthaul: key issues, features
Conference and Exhibition(OFC). IEEE, 2023: 1-3 and goals [J]. Scientia sinica informationis, 2017, 47(10): 1435-
1442. DOI: 10.1360/n112017-00136
36 网络电信 二零二四年四月