Page 41 - 网络电信2024年3月刊
P. 41
光 通 信
[4] 杨静宇,李梦岩,吉妍,等. IM/DD O-SEFDM系统生成方法及检测器 27844.
研究[J].光学学报, 2022, 42(19):1906005.Yang J Y, Li M Y, Ji Y, [23] Feng Z H, Xu L A, Wu Q, et al. Ultra-high capacity WDMSDM
et al. Research on the generation method and detector of IM/DD optical access network with self-homodyne detection
O-SEFDM system[J]. Acta Optica Sinica, 2022, 42(19):1906005. downstream and 32QAM-FBMC upstream[J]. Optics
[5] 余建军,迟楠,陈林.基于数字信号处理的相干光通信技术[M].北 Express,2017, 25(6):5951-5961.
京:人民邮电出版社, 2013.Yu J J, Chi N, Chen L. Coherent [24] Gui T, Wang X F, Tang M, et al. Real-time demonstration of
optical communication technology based on digital signal homodyne coherent bidirectional transmission for nextgeneration
processing[M]. Beijing:Posts&Telecom Press, 2013. data center interconnects[J]. Journal of Lightwave Technology,
[6] 朱子岳,赵梦鑫,张一尘,等.高速IM-DD模分复用通信系统中基于神经 2021, 39(4):1231-1238.
网络的MIMO均衡技术[J].光学学报, 2021, 41(14):1406003.Zhu [25] Gui T, Cao J T, Chen X, et al. Real-time single-carrier 800 Gb/s
Z Y, Zhao M X, Zhang Y C, et al. MIMO equalization technology DP-64QAM demonstration using bi-directional self-homodyne
based on neural network in high-speed IM-DD mode division coherent transceivers with 200 krad/s endless active polarization
multiplexing transmission system[J]. Acta Optica Sinica, 2021, controller[C]//26th Optoelectronics and Communications
41(14):1406003. Conference, July 3-7, 2021, Hong Kong, China. Washington,
[7] Karinou F, Stojanovic N, Prodaniuc C, et al. Solutions for D.C.:Optica Publishing Group, 2021:T5A. 5.
100/400-Gb/s Ethernet systems based on multimode photonic [26] Swanson E A, Livas J C, Bondurant R S. High sensitivity optically
technologies[J]. Journal of Lightwave Technology, 2017, preamplified direct detection DPSK receiver with active delay-
35(15):3214-3222. line stabilization[J]. IEEE Photonics Technology Letters,1994,
[8] Liu G N, Zhang L, Zuo T J, et al. IM/DD transmission techniques 6(2):263-265.
for emerging 5G fronthaul, DCI and metro applications[J]. [27] Cho P S, Grigoryan V S, Godin Y A, et al. Transmission of25-Gb/
Journal of Lightwave Technology, 2018, 36(2):560-567. s RZ-DQPSK signals with 25-GHz channel spacing over1000
[9] Yi L L, Liao T, Huang L Y, et al. Machine learning for100 Gb/s/ km of SMF-28 fiber[J]. IEEE Photonics Technology Letters,
λpassive optical network[J]. Journal of Lightwave Technology, 2003, 15(3):473-475.
2019, 37(6):1621-1630. [28] Gnauck A H, Winzer P J. Optical phase-shift-keyed
[10] Dai X X, Li X, Luo M, et al. LSTM networks enabled nonlinear transmission[J]. Journal of Lightwave Technology, 2005,
equalization in 50-Gb/s PAM-4 transmission links[J].Applied 23(1):115-130.
Optics, 2019, 58(22):6079-6084. [29] Winzer P J, Raybon G, Song H Y, et al. 100-Gb/s DQPSK
[11] Szczerba K, Westbergh P, Agrell E, et al. Comparison of transmission:from laboratory experiments to field trials[J].
intersymbol interference power penalties for OOK and Journal of Lightwave Technology, 2008, 26(20):3388-3402.
4-PAM in short-range optical links[J]. Journal of Lightwave [30] Nanou M, Politi C, Stavdas A, et al. High-speed, highperformance
Technology,2013, 31(22):3525-3534. DQPSK optical links with reduced complexity VDFE
[12] Elbers J P, Eiselt N, Dochhan A, et al. PAM4 vs coherent equalizers[J]. Photonics, 2017, 4(4):13.
for DCI applications[C]//Advanced Photonics 2017(IPR, [31] Cheng J C, Xie C J, Tang M, et al. A comparative study of
NOMA,Sensors, Networks, SPPCom, PS), July 24-27, 2017, intradyne and self-homodyne systems for next generation
New Orleans, Louisiana. Washington, D. C.:Optica Publishing intradatacenter optical interconnects[C]//2019 24th
Group, 2017:SpTh2D. 1. OptoElectronics and Communications Conference(OECC)
[13] Chagnon M. Optical communications for short reach[J]. Journal and 2019 International Conference on Photonics in Switching
of Lightwave Technology, 2019, 37(8):1779-1797. and Computing(PSC),July 7-11, 2019, Fukuoka, Japan. New
[14] Perin J K, Shastri A, Kahn J M. Data center links beyond100 York:IEEE Press,2019.
Gbit/s per wavelength[J]. Optical Fiber Technology, 2018,44:69- [32] Ji H L, Li J C, Li X F, et al. Beyond mrad/s polarization tracking
85. speed of complementary polarization-diversity coherent
[15] Kupfer T, Bisplinghof A, Duthel T, et al. Optimizing power receiver for remote LO[C]//Optical Fiber Communication
consumption of a coherent DSP for metro and data Conference(OFC)2022, March 6-10, 2022, San Diego,California.
center interconnects[C]//Optical Fiber Communication Washington, D. C.:Optica Publishing Group, 2022:W1G.3.
Conference,March 19-23, 2017, Los Angeles, California. [33] Ji H L, Li J C, Li X F, et al. Complementary polarizationdiversity
Washington, D.C.:Optica Publishing Group, 2017:Th3G. 2. self-coherent homodyne receiver with rapid polarization
[16] Nambath N, Raveendranath R K, Banerjee D, et al. Analog tracking for remote LO[C]//Optical Fiber Communication
domain signal processing-based low-power 100-Gb/s DP- Conference(OFC)2022, March 6-10, 2022, San Diego,California.
QPSK receiver[J]. Journal of Lightwave Technology, 2015, Washington, D. C.:Optica Publishing Group, 2022:Tu3B.3.
33(15):3189-3197. [34] Savory S, Hadjifotiou A. Laser linewidth requirements for optical
[17] Nambath N, Anghan M, Thaker N, et al. First demonstration of an DQPSK systems[J]. IEEE Photonics Technology Letters, 2004,
all analog adaptive equalizer for coherent DP-QPSK links[C]// 16(3):930-932.
Optical Fiber Communication Conference, March 19-23,2017, [35] Cai Y. Coherent detection in long-haul transmission
Los Angeles, California. Washington, D. C.:Optica Publishing systems[C]//OFC/NFOEC 2008-2008 Conference on Optical
Group, 2017:M3D.5. Fiber Communication/National Fiber Optic Engineers
[18] Perin J K, Shastri A, Kahn J M. Design of low-power DSP-free Conference,February 24-28, 2008, San Diego, CA, USA. New
coherent receivers for data center links[J]. Journal of Lightwave York:IEEE Press, 2008.
Technology, 2017, 35(21):4650-4662. [36] van den Borne D, Jansen S L, Gottwald E, et al. DQPSK
[19] Miyazaki T, Kubota F. PSK self-homodyne detection using a modulation for robust optical transmission[C]//OFC/
pilot carrier for multi-bit/symbol transmission with inverse-RZ NFOEC2008-2008 Conference on Optical Fiber Communication/
signal[J]. IEEE Photonics Technology Letters, 2005, 17(6):1334- National Fiber Optic Engineers Conference, February 24-
1336. 28,2008, San Diego, CA, USA. New York:IEEE Press, 2008.
[20] Puttnam B J, Sakaguchi J, Mendinueta J M D, et al.Investigating [37] Nagarajan R, Rahn J, Kato M, et al. 10 channel, 45.6 Gb/s per
self-homodyne coherent detection in a 19 channel space- channel, polarization-multiplexed DQPSK, InP receiver photonic
division-multiplexed transmission link[J]. Optics Express,2013, integrated circuit[J]. Journal of Lightwave Technology,2011,
21(2):1561-1566. 29(4):386-395.
[21] Puttnam B J, Luis R, Delgado-Mendinueta J M, et al. [38] Liu X, Chandrasekhar S. Direct detection of 107 Gb/s
Highcapacity self-homodyne PDM-WDM-SDM transmission in a polarization-multiplexed DQPSK with electronic polarization
19-core fiber[J]. Optics Express, 2014, 22(18):21185-21191. demultiplexing[C]//OFC/NFOEC 2008-2008 Conference on
[22] Sowailem M Y S, El-Fiky E, Morsy-Osman M, et al. Optical Fiber Communication/National Fiber Optic Engineers
Selfhomodyne system for next generation intra-datacenter Conference, February 24-28, 2008, San Diego, CA, USA.New
optical interconnects[J]. Optics Express, 2017, 25(22):27834- York:IEEE Press, 2008.
70 网络电信 二零二四年四月