Page 30 - 网络电信2023年11月刊
P. 30
光 通 信
在无LO的结构中,延迟由光学元件完成,电子元件仅进 [13] Choutagunta K, Kahn J M. Dynamic channel modeling for mode-
division multiplexing[J]. Journal of Lightwave Technology, 2017,
行时钟恢复和检测。这种结构相对简单,但由于光学延迟与载 35(12): 2451-2463.
[14] Bulow H, Baumert W, Schmuck H, et al. Measurement of the maximum
波波长相关,因此该结构对发射机激光器的频率漂移非常敏 speed of PMD fluctuation in installed field fiber[C]//OFC/IOOC.
Technical Digest. Optical Fiber Communication Conference, 1999,
感。对于DP-DQPSK,在没有延迟干涉仪调谐的224Gbit/s下, and the International Conference on Integrated Optics and Optical
Fiber Communication. IEEE, 1999, 2: 83-85.
±800MHz的频率漂移将导致2dB的损失 [40] 。 [15] Noe R, Heidrich H, Hoffmann D. Endless polarization control
systems for coherent optics[J]. Journal of lightwave technology,
在有LO的结构中,延迟在经过光电二极管后,在电域上完 1988, 6(7): 1199-1208.
[16] Walker N G, Walker G R. Endless polarisation control using four
成。相较于无LO的结构,虽然复杂度提高,但在灵敏度与损伤 fibre squeezers[J]. Electronics Letters, 1987, 23(6): 290-292.
补偿上有着优势。因为加入了LO,该结构的性能也会被LO与发 [17] Heidrich H, Von Helmolt C H, Hoffmann D, et al. Polarisation
transformer on Ti: LiNbO3 with reset-free optical operation for
射机激光器之间的频差所影响 [41] 。J .K.Perin 等人在实验中发 heterodyne/homodyne receivers[J]. Electronics Letters, 1987, 23:
335.
现,在224Gbit/s的DP-DQPSK信号传输实验中,发射机和LO激光 [18] Perin J K, Shastri A, Kahn J M. Design of low-power DSP-free
coherent receivers for data center links[J]. Journal of Lightwave
器之间的2GHz频差就会导致近3dB的信噪比损失 [18] 。 Technology, 2017, 35(21): 4650-4662.
[19] Nambath N, Ashok R, Manikandan S, et al. All-analog adaptive
equalizer for coherent data center interconnects[J]. Journal of
Lightwave Technology, 2020, 38(21): 5867-5874.
三、结束语 [20] Nambath N, Raveendranath R K, Banerjee D, et al. Analog domain
signal processing-based low-power 100-Gb/s DP-QPSK receiver[J].
随着信息社会的加速构建,光通信技术作为现代高速通信 Journal of Lightwave Technology, 2015, 33(15): 3189-3197.
[21] Wu M, Cornett F. Discrete-time and continuous-time constant
的主干技术,在社会经济发展中发挥着越来越重要的作用。在 modulus algorithm analysis[C]//Proceedings of the Twenty-Seventh
Southeastern Symposium on System Theory. IEEE, 1995: 504-508.
光通信的基础设施建设中,除了传输速率外,设备的功耗、复 [22] Razavi B. Design of analog CMOS integrated circuits[M]. 清华大学
出版社有限公司, 2005.
杂度和成本也越来越受到关注,简化相干接收技术正是在这些 [23] Sheng K, Niu H, Zhang B, et al. A 4.6-pJ/b 200-Gb/s Analog DP-
QPSK Coherent Optical Receiver in 28-nm CMOS[J]. IEEE Journal of
方面有着优势的技术,在倡导绿色、节能的环境下有着广阔的 Solid-State Circuits, 2022, 58(1): 45-56.
[24] 孔令桥,卜勤练.准相干技术在C波段25 Gbit/s光模块中的研究与应用[J].
发展前景。本文介绍了模拟相干接收技术的典型架构,各个部 光通信研究,2021(01):36-41.DOI:10.13756/j.gtxyj.2021.01.008.
[25] Granja A B, Cimoli B, Rodríguez S, et al. Ultra-wideband
分的具体实现方式,以及与模拟相干技术相近的其他简化相干 balanced schottky envelope detector for data communication with
high bitrate to carrier frequency ratio[C]//2017 IEEE MTT-S
技术,包括准相干技术、KK技术和差分接收技术。目前,简化 International Microwave Symposium (IMS). IEEE, 2017: 2052-2055.
相干技术仍主要在实验探究阶段,产业化较为有限,许多研究 [26] Cimoli B, Valdecasa G S, Granja A B, et al. An ultra-
wideband schottky diode based envelope detector for 2.5 Gbps
成果虽有技术上的进展,但不够契合工业界的实际需求,例如 signals[C]//2016 46th European Microwave Conference (EuMC). IEEE,
2016: 277-280.
为了追求传输性能而大大增加系统复杂度,背离了提供低功耗 [27] Cimoli B, Páez J S R, Turhaner A, et al. Active HEMT based
envelope detector for ultra-wideband wireless communication
低成本的简化相干方案的出发点,因此目前实际应用还较为有 systems[C]//2018 IEEE/MTT-S International Microwave Symposium-
IMS. IEEE, 2018: 923-926.
限。未来,简化相干技术研究应立足于实际应用场景,在传输 [28] Thome F, Maroldt S, Ambacher O. Novel destructive-interference-
envelope detector for high data rate ASK demodulation in wireless
性能和器件的成本、功耗、复杂度之间寻找到平衡点,推动简 communication receivers[C]//2015 IEEE MTT-S International
Microwave Symposium. IEEE, 2015: 1-4.
化相干技术更广泛的应用,为光通信技术发展注入新的活力。 [29] Thome F, Maroldt S, Schlechtweg M, et al. A low-power W-band
receiver MMIC for amplitude modulated wireless communication up
to 24 Gbit/s[C]//2014 Asia-Pacific Microwave Conference. IEEE,
2014: 1073-1075.
参考文献 [30] Song H J, Ajito K, Muramoto Y, et al. 24 Gbit/s data transmission
[1] 岳天亮,朱兵,苗益川等.数据中心服务器功耗模型研究进展[J].智能计算机 in 300 GHz band for future terahertz communications[J].
与应用,2023,13(09):17-24. Electronics Letters, 2012, 48(15): 953-954.
[2] Perin J K, Shastri A, Kahn J M. Coherent data center links[J]. [31] Altabas J A, Gallardo O, Valdecasa G S, et al. DSP-free real-time
Journal of Lightwave Technology, 2020, 39(3): 730-741. 25 GBPS quasicoherent receiver with electrical SSB filtering for
[3] Hirokawa T, Pinna S, Hosseinzadeh N, et al. Analog coherent C-band links up to 40 km SSMF[J]. Journal of Lightwave Technology,
detection for energy efficient intra-data center links at 200 2020, 38(7): 1785-1788.
Gbps per wavelength[J]. Journal of Lightwave Technology, 2020, [32] Valdecasa G S, Puertas O G, Altabas J A, et al. High-speed
39(2): 520-531. SiGe BiCMOS detector enabling a 28 Gbps quasi-coherent optical
[4] Liao C F, Liu S I. 40 Gb/s transimpedance-AGC amplifier and receiver[J]. IEEE Transactions on Circuits and Systems II:
CDR circuit for broadband data receivers in 90 nm CMOS[J]. IEEE Express Briefs, 2021, 69(3): 964-968.
Journal of Solid-State Circuits, 2008, 43(3): 642-655. [33] Mecozzi A, Antonelli C, Shtaif M. Kramers–Kronig coherent
[5] Lu M, Park H, Bloch E, et al. An integrated 40 Gbit/s optical receiver[J]. Optica, 2016, 3(11): 1220-1227.
costas receiver[J]. Journal of Lightwave Technology, 2013, [34] Zhu Y, Zou K, Ruan X, et al. Single carrier 400G transmission
31(13): 2244-2253. with single-ended heterodyne detection[J]. IEEE Photonics
[6] Lu M, Park H C, Bloch E, et al. Highly integrated homodyne Technology Letters, 2017, 29(21): 1788-1791.
receiver for short-reach coherent communication[C]//Optoelectronic [35] Füllner C, Adib M M H, Wolf S, et al. Complexity analysis of the
Devices and Integration. Optica Publishing Group, 2015: OT2A. 4. Kramers–Kronig receiver[J]. Journal of Lightwave Technology,
[7] Valenzuela L A, Xia Y, Maharry A, et al. A 50-GBaud QPSK optical 2019, 37(17): 4295-4307.
receiver with a phase/frequency detector for energy-efficient [36] Chen X, Antonelli C, Chandrasekhar S, et al. Kramers–Kronig
intra-data Center interconnects[J]. IEEE Open Journal of the receivers for 100-km datacenter interconnects[J]. Journal of
Solid-State Circuits Society, 2022, 2: 50-60. Lightwave Technology, 2018, 36(1): 79-89.
[8] Xia Y, Valenzuela L, Maharry A, et al. A fully integrated O-band [37] Fan S, Zhuge Q, **ng Z, et al. 264 Gb/s twin-SSB-KK direct
coherent optical receiver operating up to 80 Gb/s[C]//2021 IEEE detection transmission enabled by MIMO processing[C]//Optical
Photonics Conference (IPC). IEEE, 2021: 1-2. Fiber Communication Conference. Optica Publishing Group, 2018:
[9] Raveendranath R K, Nambath N, Gupta S. Frequency detector for W4E. 5.
carrier phase synchronization in 50 Gbps QPSK receiver in analog [38] Li Z, Erkılınç M S, Shi K, et al. Spectrally efficient 168 Gb/
domain[C]//2015 IEEE International Broadband and Photonics s/λ WDM 64-QAM single-sideband nyquist-subcarrier modulation
Conference (IBP). IEEE, 2015: 60-64. with Kramers–Kronig direct-detection receivers[J]. Journal of
[10] Rideout H R, Seregelyi J S, Paquet S, et al. Discriminator-aided Lightwave Technology, 2018, 36(6): 1340-1346.
optical phase-lock loop incorporating a frequency down-conversion [39] Shu L, Li J, Wan Z, et al. Single-lane 112-Gbit/s SSB-PAM4
module[J]. IEEE Photonics Technology Letters, 2006, 18(22): 2344- transmission with dual-drive MZM and Kramers–Kronig detection
2346. over 80-km SSMF[J]. IEEE Photonics Journal, 2017, 9(6): 1-9.
[11] Nambath N, Gupta A, Gupta S. A low power 100 Gbps DP-QPSK receiver [40] Kim H, Winzer P J. Robustness to laser frequency offset in
using analog domain signal processing[C]//2013 International direct-detection DPSK and DQPSK systems[J]. Journal of Lightwave
Conference on Computing, Networking and Communications (ICNC). Technology, 2003, 21(9): 1887-1891.
IEEE, 2013: 470-473. [41] Pawula R, Rice S, Roberts J. Distribution of the phase angle
[12] Nambath N, Gupta S. Low power terabit/second optical interconnects between two vectors perturbed by Gaussian noise[J]. IEEE
for data centers[C]//2014 International Conference on Signal Transactions on Communications, 1982, 30(8): 1828-1841.
Processing and Communications (SPCOM). IEEE, 2014: 1-5.
46 网络电信 二零二三年十二月