Page 30 - 网络电信2023年11月刊
P. 30

光    通    信

                在无LO的结构中,延迟由光学元件完成,电子元件仅进                         [13] Choutagunta K, Kahn J M. Dynamic channel modeling for mode-
                                                                     division multiplexing[J]. Journal of Lightwave Technology, 2017,
            行时钟恢复和检测。这种结构相对简单,但由于光学延迟与载                              35(12): 2451-2463.
                                                                  [14] Bulow H, Baumert W, Schmuck H, et al. Measurement of the maximum
            波波长相关,因此该结构对发射机激光器的频率漂移非常敏                               speed of PMD fluctuation in installed field fiber[C]//OFC/IOOC.
                                                                     Technical Digest. Optical Fiber Communication Conference, 1999,
            感。对于DP-DQPSK,在没有延迟干涉仪调谐的224Gbit/s下,                      and the International Conference on Integrated Optics and Optical
                                                                     Fiber Communication. IEEE, 1999, 2: 83-85.
            ±800MHz的频率漂移将导致2dB的损失         [40] 。                  [15] Noe R, Heidrich H, Hoffmann D. Endless polarization control
                                                                     systems for coherent optics[J]. Journal of lightwave technology,
                在有LO的结构中,延迟在经过光电二极管后,在电域上完                           1988, 6(7): 1199-1208.
                                                                  [16] Walker N G, Walker G R. Endless polarisation control using four
            成。相较于无LO的结构,虽然复杂度提高,但在灵敏度与损伤                             fibre squeezers[J]. Electronics Letters, 1987, 23(6): 290-292.
            补偿上有着优势。因为加入了LO,该结构的性能也会被LO与发                         [17] Heidrich H, Von Helmolt C H, Hoffmann D, et al. Polarisation
                                                                     transformer on Ti: LiNbO3 with reset-free optical operation for
            射机激光器之间的频差所影响           [41] 。J .K.Perin 等人在实验中发         heterodyne/homodyne receivers[J]. Electronics Letters, 1987, 23:
                                                                     335.
            现,在224Gbit/s的DP-DQPSK信号传输实验中,发射机和LO激光                 [18] Perin J K, Shastri A, Kahn J M. Design of low-power DSP-free
                                                                     coherent receivers for data center links[J]. Journal of Lightwave
            器之间的2GHz频差就会导致近3dB的信噪比损失             [18] 。              Technology, 2017, 35(21): 4650-4662.
                                                                  [19] Nambath N, Ashok R, Manikandan S, et al. All-analog adaptive
                                                                     equalizer for coherent data center interconnects[J]. Journal of
                                                                     Lightwave Technology, 2020, 38(21): 5867-5874.
                三、结束语                                             [20] Nambath N, Raveendranath R K, Banerjee D, et al. Analog domain
                                                                     signal processing-based low-power 100-Gb/s DP-QPSK receiver[J].
                随着信息社会的加速构建,光通信技术作为现代高速通信                            Journal of Lightwave Technology, 2015, 33(15): 3189-3197.
                                                                  [21] Wu M, Cornett F. Discrete-time and continuous-time constant
            的主干技术,在社会经济发展中发挥着越来越重要的作用。在                              modulus algorithm analysis[C]//Proceedings of the Twenty-Seventh
                                                                     Southeastern Symposium on System Theory. IEEE, 1995: 504-508.
            光通信的基础设施建设中,除了传输速率外,设备的功耗、复                           [22] Razavi B. Design of analog CMOS integrated circuits[M]. 清华大学
                                                                     出版社有限公司, 2005.
            杂度和成本也越来越受到关注,简化相干接收技术正是在这些                           [23] Sheng K, Niu H, Zhang B, et al. A 4.6-pJ/b 200-Gb/s Analog DP-
                                                                     QPSK Coherent Optical Receiver in 28-nm CMOS[J]. IEEE Journal of
            方面有着优势的技术,在倡导绿色、节能的环境下有着广阔的                              Solid-State Circuits, 2022, 58(1): 45-56.
                                                                  [24] 孔令桥,卜勤练.准相干技术在C波段25 Gbit/s光模块中的研究与应用[J].
            发展前景。本文介绍了模拟相干接收技术的典型架构,各个部                              光通信研究,2021(01):36-41.DOI:10.13756/j.gtxyj.2021.01.008.
                                                                  [25] Granja A B, Cimoli B, Rodríguez S, et al. Ultra-wideband
            分的具体实现方式,以及与模拟相干技术相近的其他简化相干                              balanced schottky envelope detector for data communication with
                                                                     high bitrate to carrier frequency ratio[C]//2017 IEEE MTT-S
            技术,包括准相干技术、KK技术和差分接收技术。目前,简化                             International Microwave Symposium (IMS). IEEE, 2017: 2052-2055.
            相干技术仍主要在实验探究阶段,产业化较为有限,许多研究                           [26] Cimoli B, Valdecasa G S, Granja A B, et al. An ultra-
                                                                     wideband schottky diode based envelope detector for 2.5 Gbps
            成果虽有技术上的进展,但不够契合工业界的实际需求,例如                              signals[C]//2016 46th European Microwave Conference (EuMC). IEEE,
                                                                     2016: 277-280.
            为了追求传输性能而大大增加系统复杂度,背离了提供低功耗                           [27] Cimoli B, Páez J S R, Turhaner A, et al. Active HEMT based
                                                                     envelope detector for ultra-wideband wireless communication
            低成本的简化相干方案的出发点,因此目前实际应用还较为有                              systems[C]//2018 IEEE/MTT-S International Microwave Symposium-
                                                                     IMS. IEEE, 2018: 923-926.
            限。未来,简化相干技术研究应立足于实际应用场景,在传输                           [28] Thome F, Maroldt S, Ambacher O. Novel destructive-interference-
                                                                     envelope detector for high data rate ASK demodulation in wireless
            性能和器件的成本、功耗、复杂度之间寻找到平衡点,推动简                              communication receivers[C]//2015 IEEE MTT-S International
                                                                     Microwave Symposium. IEEE, 2015: 1-4.
            化相干技术更广泛的应用,为光通信技术发展注入新的活力。                           [29] Thome F, Maroldt S, Schlechtweg M, et al. A low-power W-band
                                                                     receiver MMIC for amplitude modulated wireless communication up
                                                                     to 24 Gbit/s[C]//2014 Asia-Pacific Microwave Conference. IEEE,
                                                                     2014: 1073-1075.
            参考文献                                                  [30] Song H J, Ajito K, Muramoto Y, et al. 24 Gbit/s data transmission
             [1]  岳天亮,朱兵,苗益川等.数据中心服务器功耗模型研究进展[J].智能计算机               in 300 GHz band for future terahertz communications[J].
                与应用,2023,13(09):17-24.                               Electronics Letters, 2012, 48(15): 953-954.
             [2]  Perin J K, Shastri A, Kahn J M. Coherent data center links[J].   [31] Altabas J A, Gallardo O, Valdecasa G S, et al. DSP-free real-time
                Journal of Lightwave Technology, 2020, 39(3): 730-741.   25 GBPS quasicoherent receiver with electrical SSB filtering for
             [3]  Hirokawa T, Pinna S, Hosseinzadeh N, et al. Analog coherent   C-band links up to 40 km SSMF[J]. Journal of Lightwave Technology,
                detection for energy efficient intra-data center links at 200   2020, 38(7): 1785-1788.
                Gbps per wavelength[J]. Journal of Lightwave Technology, 2020,   [32] Valdecasa G S, Puertas O G, Altabas J A, et al. High-speed
                39(2): 520-531.                                      SiGe BiCMOS detector enabling a 28 Gbps quasi-coherent optical
             [4]  Liao C F, Liu S I. 40 Gb/s transimpedance-AGC amplifier and   receiver[J]. IEEE Transactions on Circuits and Systems II:
                CDR circuit for broadband data receivers in 90 nm CMOS[J]. IEEE   Express Briefs, 2021, 69(3): 964-968.
                Journal of Solid-State Circuits, 2008, 43(3): 642-655.   [33] Mecozzi A, Antonelli C, Shtaif M. Kramers–Kronig coherent
             [5]  Lu M, Park H, Bloch E, et al. An integrated 40 Gbit/s optical   receiver[J]. Optica, 2016, 3(11): 1220-1227.
                costas receiver[J]. Journal of Lightwave Technology, 2013,   [34] Zhu Y, Zou K, Ruan X, et al. Single carrier 400G transmission
                31(13): 2244-2253.                                   with single-ended heterodyne detection[J]. IEEE Photonics
             [6]  Lu M, Park H C, Bloch E, et al. Highly integrated homodyne   Technology Letters, 2017, 29(21): 1788-1791.
                receiver for short-reach coherent communication[C]//Optoelectronic   [35] Füllner C, Adib M M H, Wolf S, et al. Complexity analysis of the
                Devices and Integration. Optica Publishing Group, 2015: OT2A. 4.   Kramers–Kronig receiver[J]. Journal of Lightwave Technology,
             [7]  Valenzuela L A, Xia Y, Maharry A, et al. A 50-GBaud QPSK optical   2019, 37(17): 4295-4307.
                receiver with a phase/frequency detector for energy-efficient   [36] Chen X, Antonelli C, Chandrasekhar S, et al. Kramers–Kronig
                intra-data Center interconnects[J]. IEEE Open Journal of the   receivers for 100-km datacenter interconnects[J]. Journal of
                Solid-State Circuits Society, 2022, 2: 50-60.        Lightwave Technology, 2018, 36(1): 79-89.
             [8]  Xia Y, Valenzuela L, Maharry A, et al. A fully integrated O-band   [37] Fan S, Zhuge Q, **ng Z, et al. 264 Gb/s twin-SSB-KK direct
                coherent optical receiver operating up to 80 Gb/s[C]//2021 IEEE   detection transmission enabled by MIMO processing[C]//Optical
                Photonics Conference (IPC). IEEE, 2021: 1-2.         Fiber Communication Conference. Optica Publishing Group, 2018:
             [9]  Raveendranath R K, Nambath N, Gupta S. Frequency detector for   W4E. 5.
                carrier phase synchronization in 50 Gbps QPSK receiver in analog   [38] Li Z, Erkılınç M S, Shi K, et al. Spectrally efficient 168 Gb/
                domain[C]//2015 IEEE International Broadband and Photonics   s/λ WDM 64-QAM single-sideband nyquist-subcarrier modulation
                Conference (IBP). IEEE, 2015: 60-64.                 with Kramers–Kronig direct-detection receivers[J]. Journal of
             [10] Rideout H R, Seregelyi J S, Paquet S, et al. Discriminator-aided   Lightwave Technology, 2018, 36(6): 1340-1346.
                optical phase-lock loop incorporating a frequency down-conversion   [39] Shu L, Li J, Wan Z, et al. Single-lane 112-Gbit/s SSB-PAM4
                module[J]. IEEE Photonics Technology Letters, 2006, 18(22): 2344-  transmission with dual-drive MZM and Kramers–Kronig detection
                2346.                                                over 80-km SSMF[J]. IEEE Photonics Journal, 2017, 9(6): 1-9.
             [11] Nambath N, Gupta A, Gupta S. A low power 100 Gbps DP-QPSK receiver   [40] Kim H, Winzer P J. Robustness to laser frequency offset in
                using analog domain signal processing[C]//2013 International   direct-detection DPSK and DQPSK systems[J]. Journal of Lightwave
                Conference on Computing, Networking and Communications (ICNC).   Technology, 2003, 21(9): 1887-1891.
                IEEE, 2013: 470-473.                              [41] Pawula R, Rice S, Roberts J. Distribution of the phase angle
             [12] Nambath N, Gupta S. Low power terabit/second optical interconnects   between two vectors perturbed by Gaussian noise[J]. IEEE
                for data centers[C]//2014 International Conference on Signal   Transactions on Communications, 1982, 30(8): 1828-1841.
                Processing and Communications (SPCOM). IEEE, 2014: 1-5.
            46                                        网络电信 二零二三年十二月
   25   26   27   28   29   30   31   32   33   34   35