Page 25 - 网络电信2023年10月刊
P. 25
[5] Ellis D,Zhao Jian,Cotter D.Approaching the non-linear [14] Pakarzadeh H,Sharif V.Control of orbital angular momentum
Shannon limit[J].J.Lightwave Technol.,2009,28(4):423-433. of light in optofluidic infiltrated circular photonic
[6] 杨红红,陈鹤鸣,白秀丽.一种可传输42个OAM模的光子晶体光 crystal fibers[J].Opt.Commun.,2019,438:18-24.
纤[J].光通信研究,2018,206(2):32-35.Yang Honghong,Chen [15]田伟.承载光子轨道角动量光波模式的光纤设计[D].北京:
Heming,Bai Xiuli.A type of photonic crystal fibre 北京邮电大学,2017.Tian Wei.Optical fiber design
with 42 OAM modes[J].Study on Optical Communicatio for the photonic orbital angular momentum wave
ns,2018,206(2):32-35. modes[D].Beijing:Beijing University of Posts and
[7] Yue Yang,Zhang Lin,Yan Yan,et al.Octave-spanning Telecommunications,2017.
supercontinuum generation of vortices in an As2S3 ring [16] 王沙沙.生成多种轨道角动量模式光纤的设计研究[D].西安:西
photonic crystal fiber[J].Opt.Lett.,2012,37(11):1889- 安理工大学,2020.Wang Shasha.Research and design of the
1891. fiber for generating multiple orbital angular momentum
[8] Zhang Hu,Zhang Wenbo,Xi Lixia,et al.Design of a circular modes[D].Xi'an:Xi'an University of Technology,2020.
photonic crystal fiber supporting OAM modes[C]// Asia [17] Ashok N,Lee Y L,Shin W.Chalcogenide waveguide structure
Communications and Photonics Conf.:Optical Society of for dispersion in mid-infrared wavelength[J].Jap.J.Appl.
America,2015:ASu2A-54. Phys.,2017,56(3):032501.
[9] Tian Wei,Zhang Hu,Zhang Xiaoguang,et al.A circular [18] Nandam A,Jung M,Lee Y L,et al.Reverse ridge silicon
photonic crystal fiber supporting 26 OAM modes[J].Opt. strip waveguide and silica slot waveguide structure
Fiber Technol.,2016,30:184-189. for the dispersion at 1 550 nm[J].IEEE Photonics
[10] Nandam A,Shin W.Spiral photonic crystal fiber structure J.,2016,8(6):7102609.
for supporting orbital angular momentum modes[J]. [19] Mann V,Askok N,Rastogi V.Coupled strip-slot waveguide
Optik,2018,169:361-367. design for dispersion compensation[J].Opt.Quant.Electr
[11] Israk M F,Razzak M A,Ahmed K,et al.Ring- on.,2015,47(9):3161-3169.
based coil structure photonic crystal fiber for [20] 王霏,肖平平.具有混合形状空气孔的OAM传输光纤设计研究[J].
transmission of orbital angular momentum with large 光电子•激光,2020,31(3):254-261.Wang Fei,Xiao Pingping.
bandwidth:Outline,investigation and analysis[J].Opt. Design and performance of fiber with hybrid shape air
Commun.,2020,473:126003. holes for OAM mode transmission[J].J.of Optoelectronics•
[12] 张文林.具有多层结构的轨道角动量模式光纤的模式特性研究 Laser,2020,31(3):254-261.
[D].深圳:深圳大学,2017.Zhang Wenlin.Mode properties [21] Islam M,Hossain M A,Haque F.A comparative analysis
research of multi-layer structure orbital angular between low loss kagome structured THz hollow core and
momentum fiber[D].Shenzhen:Shenzhen University,2017. porous core PCF[J].AIUB J.Sci.Eng.,2017,16(2):95-100.
[13] Dashti P Z,Alhassen F,Lee H P.Observation of [22] Xu Huizhen,Wu Jian,Xu Kun,et al.Ultra-flattened chromatic
orbital angular momentum transfer between acoustic dispersion control for circular photonic crystal
and optical vortices in optical fiber[J].Phys.Rev. fibers[J].J.Opt.,2011,13(5):994-1001.
Lett.,2006,96(4):043604.
中国铁塔完成亚运会火炬传递通信保障
9月20日,在杭州亚运会火炬传递的现场,不少人通过网络与亲友连线,共同见证火炬传递的历史时刻。上午6时,杭州铁塔
的一线通信保障人员共27人就已经在本次火炬传递收官点位奥体中心西广场附近,对沿线36个通信基站进行巡检。
据悉,9月8日,杭州亚运会火炬传递从杭州西子湖畔出发,历经湖州、嘉兴、绍兴、宁波、舟山、台州、温州、丽水、金
华、衢州等地,于9月20日回到杭州,在奥体中心西广场收火。浙江铁塔第一时间组建火炬传递专项保障团队,针对通信保障、能
源供电任务,设立网络监控、现场实施、现场值守、保电专项、后勤支撑、综合保障6个工作组,定方案、明要求、抓落实,全力
推进保障各项工作。
为确保火炬传递现场的网络通信和服务保障顺畅,浙江铁塔以“零断站、零故障、零投诉”为目标,省市协同,结合每个火
炬传递城市的路线特色,提前谋划,及时和前线实时联动,全力打造亚运会火炬通信顺畅保障路线。
除了火炬传递通信保障外,浙江铁塔首次承接大型赛事火炬传递能源保电任务,为宁波、温州、金华、绍兴、嘉兴、湖州、
丽水7个城市火炬传递的起止点提供稳定的电力保障。浙江铁塔基于基站的电力保障能力向社会延伸,根据活动用电需求制定相应
的电力保障方案,在活动起始点分别定制部署由“应急UPS+双电源切换”构建的不间断电源系统,全面提升电力保障的可靠性和灵
活性。
网络电信 二零二三年十月 45