Page 25 - 网络电信2023年10月刊
P. 25

[5]  Ellis  D,Zhao  Jian,Cotter  D.Approaching  the  non-linear   [14] Pakarzadeh H,Sharif V.Control of orbital angular momentum
                 Shannon limit[J].J.Lightwave Technol.,2009,28(4):423-433.   of  light  in  optofluidic  infiltrated  circular  photonic
             [6]  杨红红,陈鹤鸣,白秀丽.一种可传输42个OAM模的光子晶体光                      crystal fibers[J].Opt.Commun.,2019,438:18-24.
                 纤[J].光通信研究,2018,206(2):32-35.Yang  Honghong,Chen   [15]田伟.承载光子轨道角动量光波模式的光纤设计[D].北京:
                 Heming,Bai  Xiuli.A  type  of  photonic  crystal  fibre   北京邮电大学,2017.Tian  Wei.Optical  fiber  design
                 with  42  OAM  modes[J].Study  on  Optical  Communicatio  for  the  photonic  orbital  angular  momentum  wave
                 ns,2018,206(2):32-35.                                modes[D].Beijing:Beijing  University  of  Posts  and
             [7]  Yue  Yang,Zhang  Lin,Yan  Yan,et  al.Octave-spanning   Telecommunications,2017.
                 supercontinuum  generation  of  vortices  in  an  As2S3  ring   [16]  王沙沙.生成多种轨道角动量模式光纤的设计研究[D].西安:西
                 photonic  crystal  fiber[J].Opt.Lett.,2012,37(11):1889-  安理工大学,2020.Wang  Shasha.Research  and  design  of  the
                 1891.                                                fiber  for  generating  multiple  orbital  angular  momentum
             [8] Zhang Hu,Zhang Wenbo,Xi Lixia,et al.Design of a circular   modes[D].Xi'an:Xi'an University of Technology,2020.
                 photonic  crystal  fiber  supporting  OAM  modes[C]//  Asia   [17] Ashok N,Lee Y L,Shin W.Chalcogenide waveguide structure
                 Communications  and  Photonics  Conf.:Optical  Society  of   for dispersion in mid-infrared wavelength[J].Jap.J.Appl.
                 America,2015:ASu2A-54.                               Phys.,2017,56(3):032501.
             [9]  Tian  Wei,Zhang  Hu,Zhang  Xiaoguang,et  al.A  circular   [18]  Nandam  A,Jung  M,Lee  Y  L,et  al.Reverse  ridge  silicon
                 photonic  crystal  fiber  supporting  26  OAM  modes[J].Opt.  strip  waveguide  and  silica  slot  waveguide  structure
                 Fiber Technol.,2016,30:184-189.                      for  the  dispersion  at  1  550  nm[J].IEEE  Photonics
             [10] Nandam A,Shin W.Spiral photonic crystal fiber structure   J.,2016,8(6):7102609.
                 for  supporting  orbital  angular  momentum  modes[J].  [19]  Mann  V,Askok  N,Rastogi  V.Coupled  strip-slot  waveguide
                 Optik,2018,169:361-367.                              design  for  dispersion  compensation[J].Opt.Quant.Electr
             [11]  Israk  M  F,Razzak  M  A,Ahmed  K,et  al.Ring-     on.,2015,47(9):3161-3169.
                 based  coil  structure  photonic  crystal  fiber  for   [20]  王霏,肖平平.具有混合形状空气孔的OAM传输光纤设计研究[J].
                 transmission  of  orbital  angular  momentum  with  large   光电子•激光,2020,31(3):254-261.Wang  Fei,Xiao  Pingping.
                 bandwidth:Outline,investigation  and  analysis[J].Opt.  Design  and  performance  of  fiber  with  hybrid  shape  air
                 Commun.,2020,473:126003.                             holes for OAM mode transmission[J].J.of Optoelectronics•
             [12]  张文林.具有多层结构的轨道角动量模式光纤的模式特性研究                        Laser,2020,31(3):254-261.
                 [D].深圳:深圳大学,2017.Zhang  Wenlin.Mode  properties   [21]  Islam  M,Hossain  M  A,Haque  F.A  comparative  analysis
                 research  of  multi-layer  structure  orbital  angular   between  low  loss  kagome  structured  THz  hollow  core  and
                 momentum fiber[D].Shenzhen:Shenzhen University,2017.   porous core PCF[J].AIUB J.Sci.Eng.,2017,16(2):95-100.
             [13]  Dashti  P  Z,Alhassen  F,Lee  H  P.Observation  of   [22] Xu Huizhen,Wu Jian,Xu Kun,et al.Ultra-flattened chromatic
                 orbital  angular  momentum  transfer  between  acoustic   dispersion  control  for  circular  photonic  crystal
                 and  optical  vortices  in  optical  fiber[J].Phys.Rev.  fibers[J].J.Opt.,2011,13(5):994-1001.
                 Lett.,2006,96(4):043604.






                                           中国铁塔完成亚运会火炬传递通信保障



                9月20日,在杭州亚运会火炬传递的现场,不少人通过网络与亲友连线,共同见证火炬传递的历史时刻。上午6时,杭州铁塔
            的一线通信保障人员共27人就已经在本次火炬传递收官点位奥体中心西广场附近,对沿线36个通信基站进行巡检。

                据悉,9月8日,杭州亚运会火炬传递从杭州西子湖畔出发,历经湖州、嘉兴、绍兴、宁波、舟山、台州、温州、丽水、金
            华、衢州等地,于9月20日回到杭州,在奥体中心西广场收火。浙江铁塔第一时间组建火炬传递专项保障团队,针对通信保障、能
            源供电任务,设立网络监控、现场实施、现场值守、保电专项、后勤支撑、综合保障6个工作组,定方案、明要求、抓落实,全力
            推进保障各项工作。

                为确保火炬传递现场的网络通信和服务保障顺畅,浙江铁塔以“零断站、零故障、零投诉”为目标,省市协同,结合每个火
            炬传递城市的路线特色,提前谋划,及时和前线实时联动,全力打造亚运会火炬通信顺畅保障路线。

                除了火炬传递通信保障外,浙江铁塔首次承接大型赛事火炬传递能源保电任务,为宁波、温州、金华、绍兴、嘉兴、湖州、
            丽水7个城市火炬传递的起止点提供稳定的电力保障。浙江铁塔基于基站的电力保障能力向社会延伸,根据活动用电需求制定相应
            的电力保障方案,在活动起始点分别定制部署由“应急UPS+双电源切换”构建的不间断电源系统,全面提升电力保障的可靠性和灵
            活性。



                                                       网络电信 二零二三年十月                                            45
   20   21   22   23   24   25   26   27   28   29   30