Page 25 - 网络电信2021年1/2月刊下
P. 25

特  别   关  注

                           工信部向基础电信运营企业颁发为期
             表5 UL2100M RRU设备双端口引接(3G效果对比)
                             10年的5G中低频段频率使用许可证

                 为贯彻落实党的十九届五中全会精神,加快第五代移动                            根据国家对5G产业发展总体部署要求,工业和信息化部
             通信建设,保障5G发展频率资源使用,12月22日,工业和信                       加强频率统筹规划,优化资源配置,重点抓好5G频率资源保
             息化部组织中国电信、中国移动、中国联通召开5G频率使用                         障工作,加快推进共建共享,要求各基础电信运营企业要进
             座谈会,部党组成员、总工程师田玉龙主持会议并向三家基                          一步推进5G建设,打造高质量5G网络,提高频率资源使用效
             础电信运营企业颁发5G中低频段频率使用许可证。                             率和效益,深化5G在各行业中的应用,推动5G改变社会、服
                 此次工业和信息化部依申请向三家基础电信运营企业颁                        务经济、造福人民。
             发了为期十年的5G频率使用许可,同时许可部分现有4G频率                            工业和信息化部无线电管理局、信息通信发展司、信息
             资源重耕后用于5G,此举是推动5G网络规模部署和高质量发                        通信管理局,国家无线电监测中心相关负责人参加会议。
             展的重要举措。
            (上接第67页)                                             [65]  El  Sibai  R,  Gemayel  N,  Bou  Abdo  J,  et  al.  A  survey
            [56] Fang L, Cheng X, Wang H, et al. Idle time prediction in   on  access  control  mechanisms  for  cloud  computing[J].
                 cellular  networks  with  deep  spatiotemporal  modeling[J].   Transactions on Emerging Telecommunications Technologies,
                 IEEE  Journal  on  Selected  Areas  Communications,  2019,   2019: e3720.
                 37(6): 1441-1454.                               [66]  Kocabas  O,  Soyata  T.  Towards  privacy-preserving  medical
            [57]  Xie  J,  Yu  F  R,  Huang  T,  et  al.  A  survey  of  machine   cloud computing using homomorphic encryption[M]//Virtual
                 learning  techniques  applied  to  software  defined   and  Mobile  Healthcare:  Breakthroughs  in  Research  and
                 networking  (SDN):  Research  issues  and  challenges[J].   Practice. IGI Global, 2020: 93-125.
                 IEEE  Communications  Surveys  &  Tutorials,  2018,  21(1):   [67] Liu H, Lang B. Machine Learning and Deep Learning Methods
                 393-430.                                             for  Intrusion  Detection  Systems:  A  Survey[J].Applied
            [58]  Fadlullah  Z  M,  Tang  F,  Mao  B,  et  al.  State-of-the-  Sciences, 2019, 9(20): 4396.
                 art  deep  learning:  Evolving  machine  intelligence   [68]  Shone  N,  Ngoc  T  N,  Phai  V  D,  et  al.  A  deep  learning
                 toward  tomorrow’s  intelligent  network  traffic  control   approach  to  network  intrusion  detection[J].  IEEE
                 systems[J].  IEEE  Communications  Surveys  &  Tutorials,   Transactions  on  Emerging  Topics  in  Computational
                 2017, 19(4):2432-2455.                               Intelligence, 2018, 2(1): 41-50.
            [59]  Akhtar  Z,  Nam  Y  S,  Govindan  R,  et  al.  Oboe:  auto-  [69]  Wu  D,  Xia  Y,  Sun  X  S,  et  al.  Masking  failures  from
                 tuning  video  ABR  algorithms  to  network  conditions[C]//  application  performance  in  data  center  networks  with
                 Proceedings  of  the  2018  Conference  of  the  ACM  Special   shareable  backup[C]//Proceedings  of  the  2018  Conference
                 Interest Group on Data Communication. ACM, 2018:44-58.  of the ACM Special Interest Group on Data Communication.
            [60]  Van  Huynh  N,  Hoang  D  T,  Nguyen  D  N,  et  al.  Optimal   ACM, 2018: 176-190.
                 and  Fast  Real-Time  Resource  Slicing  With  Deep  Dueling   [70] Luckie M, Beverly R. The impact of router outages on the
                 Neural  Networks[J].  IEEE  Journal  on  Selected  Areas  in   AS-level  internet[C]//Proceedings  of  the  Conference  of
                 Communications, 2019, 37(6): 1455-1470.              the  ACM  Special  Interest  Group  on  Data  Communication.
            [61]  Mao  H,  Schwarzkopf  M,  Venkatakrishnan  S  B,  et  al.   ACM, 2017: 488-501.
                 Learning  scheduling  algorithms  for  data  processing   [71]  Tootaghaj  D  Z,  Bartolini  N,  Khamfroush  H,  et  al.  On
                 clusters[C]//Proceedings  of  the  ACM  Special  Interest   progressive network recovery from massive failures under
                 Group on Data Communication. ACM, 2019: 270-288.     uncertainty[J]. IEEE Transactions on Network and Service
            [62]  Dong  M,  Meng  T,  Zarchy  D,  et  al.  PCC  vivace:  Online-  Management, 2018, 16(1): 113-126.
                 learning  congestion  control[C]//USENIX  Symposium  on   [72]  Li  D,  Shen  X,  Chen  N,  et  al.  Space-based  information
                 Networked  Systems  Design  and  Implementation  (NSDI),   service  in  Internet  Plus  Era[J].  Science  China
                 2018: 343-356.                                       Information Sciences, 2017, 60(10): 102308.
            [63]  Valadarsky  A,  Schapira  M,  Shahaf  D,  et  al.  Learning  to   [73]    Liu  J,  Shi  Y,  Fadlullah  Z  M,  et  al.  Space-air-ground
                 route[C]//Proceedings  of  the  16th  ACM  workshop  on  hot   integrated  network:  A  survey[J].  IEEE  Communications
                 topics in networks. 2017: 185-191.                   Surveys & Tutorials, 2018, 20(4): 2714-2741.
            [64]  Ravidas  S,  Lekidis  A,  Paci  F,  et  al.  Access  control  in   [74]  Casoni  M,  Grazia  C  A,  Klapez  M,  et  al.  Integration
                 Internet-of-Things: A survey[J]. Journal of Network and   of  satellite  and  LTE  for  disaster  recovery[J].  IEEE
                 Computer Applications, 2019, 144: 79-101.            Communications Magazine, 2015, 53(3): 47-53.


            46                                        网络电信 二零二一年一、二月
   20   21   22   23   24   25   26   27   28   29   30