摘要:
5G时代渐行渐近,终端模组和手机市场已经硝烟四起,国内外5G相关的标准组织和产业都在紧锣密鼓的布局,抢占市场先机。作为光通信产业链的重要一环,光模块产业也在5G的推动下不断创新,为5G和云网络提供高带宽低时延的全面连接。
本文主要分析5G光模块的关键技术方案,通过技术和新产品的结合来深入理解5G光模块产业的新需求,以及相关技术的未来趋势。
一、5G相对4G的变革
移动通信在从1G发展到5G的过程中,5G使用的频率提高到Sub6GHz和毫米波范围,在获得大带宽的同时面临基站覆盖范围减小的困境。因此5G相对于4G的RAN(Radio Access Network)架构也发生了新变化,5G前传、中传和回传对光接入和承载网络提出高带宽低时延的新要求[4]。
图1 5G相对4G网络重构的变革
CPRI(Common Public Radio Interface,通用公共无线电接口)是一个通用的标准,将数字基带I / Q信号传输到传统BS(基站)中的无线电处理单元,满足无线前传对带宽和时延的严格要求。CPRI定义了多种接口速率,目前4G基站前传主要采用10Gb/s以下的光模块。而高频段、更宽频谱和新空口技术使得5G基站带宽需求大幅提升,新一代标准化的5G前传接口标准eCPRI(enhanced-CPRI)采用分组化的以太网接口,可以借助25G及以上的以太网产业链,成为5G前传的主流应用。
图2 4G和5G无线前传带宽评估
在5G前传采用eCPRI接口的基础上,5G光接入和承载网各节点之间对光模块的典型需求如下:
前传:初期10G和25G混用,成熟期业界主流采用25G前传模块。25G BiDi单纤双向光模块能够有效节省光纤资源并降低部署成本,成为目前各光模块厂商投入的重点。低成本可调谐25G光模块也在研发中。
中传:在对流量进行一定的收敛比情况下,规模采用25G,50G的光模块,后期发展到100G/200G。50G及以上多采用PAM4高阶调制技术。
回传:5G初期可采用100G光模块,采用PAM4技术的200G/400G光模块也会逐步应用,未来将向600G/800G演进,部分场景将引入低成本相干技术[2]。
表1 5G承载光模块应用场景及需求分析
二、5G光模块现状
根据IMT-2020(5G)推进组发布的《5G承载光模块白皮书》的汇总[1],前传光模块主要包括25Gb/s和100Gb/s两大速率类型,支持数百米到20km的典型传输距离,具体技术现状如表所示。
表2 5G前传光模块技术现状
5G中回传光模块主要包括25Gb/s、50Gb/s、100Gb/s、200Gb/s、400Gb/s等多种速率,典型传输距离从几km到数百km。
表3 5G中回传光模块技术现状
三、5G光模块关键技术
3.1 工温25G低成本激光器
由于5G无线前传微基站设备数量众多并且工作于恶劣的室外环境下,5G前传光模块对成本、功耗与宽温工作都有严格的要求。普通商业级光模块,正常工作温度为0~70℃;而工业级光模块的工作温度为-40℃~85℃。
要实现工业级光器件,需要从两个方面突破,首先无制冷25G工业级DFB激光器是核心器件。但掌握此核心激光器量产能力的厂家很少,国内大多依赖进口。其次,需要采取高效的散热方法把激光器的热量通过外壳耗散出去。
图3 工业级光模块的散热途径
常规半导体激光器在没有温控措施的高温环境下,会导致阈值电流指数级增加,发光功率指数级递减,消光比恶化,同时节温的急剧增加导致激光器寿命大幅缩短,无法满足严酷的室外环境下的工作要求。虽然通过温度控制方式可以使常规激光器可能用于室外环境,例如将常规DFB激光器放置在微型TEC制冷器上,制作成制冷激光器组件,但微型TEC的自身成本、封装和控制电路成本、功耗都显著增加,无法满足5G前传低成本低功耗的根本诉求,因此从激光器光芯片本身进行创新才能满足5G前传光模块的需求。
工业级无制冷25G DFB需要从半导体材料,激光器结构设计方面进行。高温半导体激光器可以在材料上使用掺入铝元素的AlInGaAs/AlGaAs,在激光器结构设计上采用多量子阱MQW或量子点QD结构[5]。
图4 采用AlGaAs和量子点结构的高温DFB激光器
2018年光迅等公司都推出了业内领先的高性价比的25G SFP28 LR工业级产品,功耗小于1W,为5G前传奠定了基础。但25G工温激光器芯片仍然是国内亟待突破并持续投入的关键领域。
3.2 100G硅光集成
硅光子(SiP)是基于硅和硅基衬底材料(SiGe/Si、SOI 等),利用现有 CMOS 工艺进行光器件开发和集成的新一代技术,结合了集成电路技术的超大规模、超高精度制造的特性和光子技术超高速率、超低功耗的优势。同时,硅光技术可以通过晶圆测试等方法进行批量测试,测试效率显著提升从而降低成本。
硅光集成目前多应用于短距离多通道的100G或以上速率的高端光模块,能够极大降低光器件的封装体积和功耗。预计到2022年,硅光子光收发器市场将超20亿美元,在全球光收发器市场中占比超20%。
图5 硅光子市场增长
近年来Intel、Luxtera、Acacia、光迅、Rockley、MACOM等企业先后推出芯片级、模块级产品,并逐步实现小批量商用出货。
当前硅光工艺能够加工的芯片级器件主要包括光波导、合分波器件、外调制器件、硅锗APD接收器等,但不包含激光芯片。主要是因为硅是间接带隙,空穴复合效率很低,发光效率极低。因此目前硅光方案主流仍是硅基混合集成,激光器仍使用传统的III-V族材料,采用分立贴装(光迅、Luxtera等)或晶圆键合加工(Intel等)将III-V族的激光器与硅上集成的调制、耦合光路等加工在一起
图6 Intel硅光六大关键难点
硅光技术逐步成熟,但从芯片到光模块,集成和封装工艺上仍存在较多技术难点,封装良率和成本仍有待优化,还需要一段时间的积累和发展来提高成熟度和完善批量化工艺。
图7 Intel硅光100G PSM4光模块
图8 Juniper硅光100G LR4光模块
近来Intel先后发布了基于50G和100G硅光技术的光模块,大幅简化了模块内部的结构和生产工序,工艺成熟后有望显著的降低成本。OFC2019上Juniper也以硅光为切入点发布了100G和400G硅光模块。国内一些设备商和光模块厂商也在硅光自主开发上有所布局,目前大多处于实验室阶段,与国外还有较大的差距。
3.3 25G/50G BiDi光模块和DSFP
BiDi光模块只有一个端口,通过光模块中的光合波/分波器将两个不同的波长信号放到同一根光纤上传送,同时完成一种波长光信号的发射和另一种波长光信号的接收。BiDi光模块的波长都是组合形式的,因此BiDi光模块必须成对使用,它最大的优势就是节省光纤资源,上下行等距可有效保证5G要求的高精度时间同步等优势。
BiDi光模块的价格高于传统双纤双向光模块,但BiDi光模块所需要的光纤数量却减少了一半,使用更少的光纤所节约的成本要远远超过购买BiDi光模块增加的花费。
图9 25G BiDi工作原理图
25G BiDi光模块产品发射端采用非制冷DFB TO形式,中心波长分别为1270nm/1330nm,接收端多采用高灵敏度25G PIN形式,接收波长分别为1330nm/1270nm。产品沿用成熟的光器件同轴封装工艺平台,实现单纤双向的BOSA(Bi-Direction Optical Subassembly)光组件。
BiDi光组件中的光合波分波器有两种方案,一种是WDM方案,多采用TFF薄膜滤波片,技术成熟,体积小插损小,成本低。第二种是采用两个微型环形器串联的方案,环形器方案对公共端反射串扰非常敏感,出纤需要采用具有高回损指标的光纤倾斜端面接口,并对实际工程使用提出了较高的要求,所以25G BiDi光模块建议优先考虑WDM方案。
25G/50G BiDi的关键技术在于解决光/电收发窜扰,25G设计高速封装和信号完整性,低功耗设计。目前国内多个厂家发布25G/50G BiDi相关产品,正处于小批量样品阶段。
在BiDi的基础上,2018年业界发布了双小型可插拔多源协议组(Dual Small Form-Factor Pluggable Multi-Source Agreement,DSFP MSA)规范,将SFP28模块密度和总带宽翻倍,DSFP将可以支持56Gb/s NRZ或者112Gb/s PAM4传输,未来还可以支持基于PAM4的224Gb/s的传输。
继2018年推出双10G DSFP+工温光模产品后,光迅科技也拟在2019年继续推出业内领先的双25G DSFP28光模块,此产品的推出将大大提升前传解决方案的性价比,更好地促进5G的部署。
图10 DSFP28 BiDi光模块功能框图
通信设备采用DSFP光模块后,由于模块密度翻倍,因此成倍提高了通信设备的端口密度和吞吐量,也相应的提高了设备的性价比,增加了客户的产品竞争力。3.4 低成本25G可调光模块技术
根据业界的研究,可调激光器需要能够提供16~20个不同波长才能满足前传网络系统的要求。为了降低波长稳定控制的难度,波长间隔一般在100GHz以上,所以波长可调范围需要在8nm以上。为了降低传纤损耗,25G最好工作在O波段,而业界可调激光器大多工作在C和L波段,基本只能满足中短距的需求。
根据光源类型及调谐方式的不同,波长可调谐激光器存在多种技术方案,从成本、性能、功耗和技术成熟度综合考虑,基于WDM方案的5G前传网络主要采用两种可调激光器:(1)基于取样光栅分布布拉格反射器(SG-DBR)技术的激光器具有波长可调谐范围宽、调谐速度快(ns~us级)、调制速率高和成本相对较低等优势,是业界主流技术方案,当目前国内量产能力匮乏。(2)基于温度调节的DFB波长可调范围只有4nm左右,单个DFB无法满足可调范围需求,只能采用DFB阵列的方式,每个DFB覆盖4nm范围,多个DFB并联且通过选通控制来选择某个DFB工作,实现需要的特定波长,调谐速度在秒级。
目前批量商用的可调激光器技术大都掌握在国外厂家手中,近年来随着产业界的并购,少数国内厂家通过收购获得了常规多段式DBR可调激光器的产业化能力,波长调谐范围支持10nm量级,一般可满足20通道@100GHz波长间隔的应用场景。
图11 主流可调激光器原理
在获得需要的可调波长之后,波长稳定是需要解决的另外一个难题,一般需要通过闭环的监控环路动态的微调波长,从而满足系统需要的波长稳定度。此外,在波长调节的过程中,还需要设法避免对其他设备的波长造成的干扰,避免对其他波长上业务的影响。G.metro标准通过调顶方式构造一个带外的控制信令通道,实现远程的波长调节控制功能。
新一代光传送网论坛(NGOF)目前正从标准化和企业合作着手,推动低成本25G可调技术的研发和产业化应用,有望突破国外技术壁垒,实现低成本的WDM-PON前传方案。
四、总结和展望
5G和数据中心对光通信产业的拉动带来巨大的市场机会,作为5G的基础网络设施,光模块产业链在5G前夕已经投入大量资源,按照《中国光电子器件产业技术发展路线图》的指引[3],尽快突破25G工温DFB和低成本封装的国产批量化生产是非常紧迫的任务。结合50G/100G PAM4和硅光集成技术的多通道100G/200G/400G光模块会对中传和回传带来深远的影响,成为当前研究和产业化的重点。在此基础上,低成本25G可调光模块将成为5G前传的有益补充。
在向5G成熟期的发展中,更为高速的50G/100G/200G BiDi也将进入技术规划,数据中心之间的长距高速互联将引入低成本的相干技术。技术的创新浪潮最终需要通过市场的检验来实现优胜劣汰,新产品的快速迭代也对光模块厂家的技术、生产、运营能力提出了更高的要求。
2020年5G的规模商用即将到来,资本和新厂家的不断涌入也促进技术的不断创新,从而避免产品的同质化竞争。掌握核心光芯片和封装技术的企业将获得更大的竞争力和经济收益。
参考文献:
[1]IMT-2020(5G)推进组,5G承载光模块白皮书,2019.1,Page 5
[2]IMT-2020(5G)推进组,5G承载网络架构和技术方案白皮书,2018.9,Page 6
[3]中国电子元件行业协会,中国光电子器件产业技术发展路线图(2018-2022年),2017.12,Page 19
[4]中国电信,5G时代光传送网技术白皮书,2017.9,Page 5
[5]Emission of InAs quantum dots embedded in InGaAs/InAlGaAs/GaAs quantum wells,R.Cisnero Tamayo,Journal of Luminescence,Volume 149, May 2014, Pages 1-6
武汉光迅科技股份有限公司 高建河 郭玲 蒋波 余向红 张军 徐红春 |